

WP3 CHIPS Microsimulation Tool

CHIPS Microsimulation Tool USER GUIDE

"This document describes the steps to use the microsimulation tool developed in Working Package 3 of the CHIPS project"

Introduction

We have developed an Excel tool to simulate price and /or income shocks. The Excel is composed by the eight following sheets:

Sheet 1. Data	2
Sheet 2. Parameters	
Sheet 3. Potential reforms (or shocks)	4
Sheet 4. Expenditure shares	5
Sheet 5. Tax payments	7
Sheet 6. Welfare measures	8
Sheet 7. Indexes and graphs	
Sheet 8. Auxiliary calculations	
Sheet 9. Notes	

Sheet 1. Data

This sheet contains the variables in the database necessary to conduct the simulations performed in other sheets of the tool. We can use any set of microeconomic information. It could be a survey, but the Excel file supports sources containing economic and demographic information not from a survey. For instance, we can set information containing income, prices, and the demographic structure of populations with two requirements: i) it is necessary to include among them those corresponding to the variables included in the estimated specification of the demand system (except if the user change the system and the functioning of this sheet), but it is always possible to a reduced number of parameters in the simulation step; ii) the simulations are done at the level of the variables included in the information set, i.e., household data, but all results can be aggregated to the desired level (deciles or quintiles of income or total expenditure or population aggregate), and the tool even can work with data for homogeneous households. The data in this sheet corresponds to wave 2018 of the Encuesta Nacional sobre Ingresos y Gastos de los Hogares (ENIGH) for Mexico as partially presented in Figure 1. We have also proved it on the wave 2019 of the Spanish Household Budget Survey (Encuesta de Presupuestos Familiares).

household	wfood	wgasoline	wlpg	welectricity	wothernondur	pfood	pgasoline	plgp	pelectric	pothenondur
1	0,195	0,443	0,000	0,023	0,339	1,002	1,047	1,048	0,997	1,025
2	0,555	0,243	0,000	0,041	0,161	1,002	1,047	1,048	0,997	1,021
3	0,279	0,579	0,000	0,057	0,085	1,002	1,047	1,048	0,997	1,019
4	0,524	0,000	0,000	0,026	0,449	1,002	1,047	1,048	0,997	1,027
5	0,408	0,105	0,162	0,030	0,295	1,002	1,047	1,048	0,997	1,024
6	0,428	0,430	0,000	0,007	0,135	1,002	1,047	1,048	0,997	1,024
7	0,669	0,000	0,055	0,075	0,201	1,002	1,047	1,048	0,997	1,027
8	0,285	0,332	0,000	0,002	0,380	1,009	1,019	0,998	1,001	1,018
9	0,667	0,093	0,000	0,005	0,234	1,009	1,019	0,998	1,001	0,998
10	0,434	0,000	0,000	0,100	0,466	1,009	1,020	0,998	1,001	1,017
11	0,568	0,200	0,000	0,007	0,225	1,009	1,019	0,998	1,001	1,003
12	0,441	0,254	0,187	0,043	0,074	1,007	1,034	1,052	0,995	1,047
13	0,608	0,125	0,000	0,045	0,222	1,007	1,034	1,052	0,995	1,023
14	0,482	0,081	0,045	0,019	0,374	1,007	1,034	1,052	0,995	1,033
15	0,353	0,328	0,000	0,005	0,314	1,007	1,034	1,052	0,995	1,035
16	0,583	0,110	0,068	0,024	0,215	1,007	1,034	1,052	0,995	1,033
17	0,308	0,184	0,059	0,025	0,424	1,007	1,034	1,052	0,995	1,029
18	0,683	0,000	0,070	0,002	0,246	1,007	1,035	1,052	0,995	1,033
19	0,300	0,000	0,000	0,041	0,659	1,007	1,035	1,052	0,995	1,018
20	0,610	0,182	0,045	0,023	0,140	1,007	1,034	1,052	0,995	1,036
21	0,562	0,000	0,244	0,076	0,118	1,023	1,048	0,981	1,002	1,023
22	0,628	0,000	0,000	0,071	0,302	1,023	1,048	0,981	1,002	1,026

Fig	ure	1.	Data	sh	eet
1 15	ui C		ναια	311	LLL

Sheet 2. Parameters

Since we do behavioral simulations, we need the parameters of a demand system. This sheet contains the parameter estimates for the *k* number of equations contained in the system. There is no need to estimate a demand system, but we can take the parameters from a system previously estimated in the literature, which should be include in this sheet. For the tool to correctly do the simulations, the requirement is that the estimated model should be a Quadratic Almost Ideal Demand System (QAIDS) of Banks *et al.* (1997). Figure 2 reports a subset of the estimated parameters for a QUAIDS model with k = 5 using pooled household cross-section data for the period 2006-2018 for Mexico.¹

PARAMETER ESTIMATES					
	wfood	wgasoline	wlpg	welectricity	wothenondur
gamma_Inpfood	-0,1088	-0,0106118	0,001575	-0,0476372	0,1654706
gamma_Inpgasoline	-0,01061	0,0427218	-0,01391	-0,0185386	0,0003363
gamma_Inplpg	0,001575	-0,0139077	0,022426	0,0029065	-0,0129994
gamma_Inpelectricity	-0,04764	-0,0185386	0,002907	0,013353	0,0499163
gamma_Inpothenondur	0,165471	0,0003363	-0,013	0,0499163	-0,2027239
beta_Inexpenditure	-0,16719	0,0852646	0,012292	-0,0657342	0,135368
lambda_Inexpendituresq	-0,0125	-0,0061322	-0,00587	0,0066297	0,0178718
rho_vgtnodur	0,247128	-0,0546089	-0,00628	0,0226307	-0,2088686
alpha_gender	-0,00781	-0,0128691	0,002355	0,0027696	0,0155517
alpha_age	0,002857	0,0001376	0,000118	0,0004434	-0,0035557
alpha_agesq	-2,6E-05	-2,27E-06	2,32E-06	-3,32E-06	0,0000291
alpha_#older	0,032744	-0,0113409	-0,00073	0,0020222	-0,0226965
alpha_#young	0,025173	-0,0087559	-0,00129	0,002157	-0,0172804
alpha_urban	0,02149	-0,021314	0,000656	0,0109834	-0,0118153
alpha_north	-0,09063	0,0253054	0,008494	0,0260688	0,0307595
alpha_center	-0,0078	-0,0045474	0,011904	-0,0016966	0,0021424
alpha_edu1	-0,00515	-0,0149836	0,000281	0,0004441	0,0194116
alpha_edu2	0,002582	-0,0202515	0,001333	0,0008817	0,0154546
alpha_edu3	0,011635	-0,0211643	0,000543	-0,000582	0,0095682
alpha_nhabit	-0,00045	0,0008584	0,000927	0,0012974	-0,0026286

Figure 2. Parameter estimates sheet

¹ Details of the dataset and the system estimated are in Labandeira *et al.* (2022).

Sheet 3. Potential reforms (or shocks)

In this sheet we should enter the data for the reform under consideration. The form to enter new prices of the goods is in percent variation, which is the way to calculate the new prices to include in the equations estimated and predict the new shares of expenditures after the shock. Once changes in prices are filled in the adequate cells, new prices for each good are calculated and shown at the bottom-left of Figure 3.

It is also possible to introduce shocks to income, which are again in percent variation corresponding to deciles of income. The changes in income produce a new income variable for each household, which could be reported here, but we include it in the Auxiliary calculations sheet. Two further considerations should be done here: i) of course, the tool also allow household-specific variation in income; ii) variation in income could be computed using different variables instead of the distribution of income (location, for instance) or in addition to the distribution of income.²

	Reform. CO2 tax. 25\$/tCO)2		Reform. Income	shock. % variation
	Variation in energy price	s		Variation in h	ousehold income
	Gasoline	5,73%	i	Decile 1	-10%
	LPG	10,5%	i	Decile 2	-10%
	Electricity	10,0%	i	Decile 3	-10%
				Decile 4	-10%
	Reform. Energy pr	ices		Decile 5	-10%
household	pgasolinas_r1	pglp_r1	pele_r1	Decile 6	-10%
1	1,10)7 1,158	1,097	Decile 7	-10%
2	2 1,10)7 1,158	1,097	Decile 8	-10%
3	3 1,10	07 1,158	1,097	Decile 9	-10%
4	1,10	07 1,158	1,097	Decile 10	-10%
5	5 1,10	1,158	1,097		

Figure 3. Potential reforms (shocks) sheet

² We refer in an indistinguishable way to income and total expenditure. We always use as proxy for income total expenditure on the goods modelled in the system, which are normally an aggregate of household non-durable expenditure.

Sheet 4. Expenditure shares

This sheet shows, first, the predicted expenditure shares of the different goods in the demand model under consideration. The predictions are done using the formulae of this share equation, and we use the data in the Data sheet, the parameters in the Parameters sheet and the new prices and/or new total expenditure variables as calculated in the Potential reforms sheet, according to:³

$$w_i^h = \alpha_i^h + \sum_{j=1}^k \gamma_{ij} \ln p_j + \beta_i \ln \left[\frac{m^h}{a(p)}\right] + \frac{\lambda_i}{b(p)} \left\{ \ln \left[\frac{m^h}{a(p)}\right] \right\}^2$$

Where *i*, *j* refers to the good, *h* to the household; α_i^h collects the product of demographic variables and parameters (so it depends on goods and households); p_j is the price of good *j*; α, γ, β and λ are parameters and m^h is household's h income (total expenditure on non-durable goods).

$$a(p) = \alpha_0 + \sum_{i=1}^k \alpha_i lnp_i + \frac{1}{2} \sum_{i=1}^k \sum_{j=1}^k \gamma_{ij} lnp_i lnp_j$$
$$b(p) = \prod_{i=1}^k p_i^{\beta_i}$$
$$\lambda(p) = \sum_{i=1}^k \lambda_i lnp_i$$

Next, the expenditure shares because of the reform are shown, calculated from the expenditure shares predicted by the model, the estimated parameters (parameter sheet) and the new prices (or new income or both new prices and new income) because of the reform (Potential reform sheet), following the formula (we only include in this guide the case of price changes):

$$w_i^{R1} = w_i + \sum_{j=1}^k \gamma_{ij} (lnp_j^{R1} - lnp_j)$$

Where p_j^{R1} is the price of good *j* after the reform (or shock) and p_j is the initial price (before the reform or the shock). We can calculate shares after and income shock in an equivalent way but using in the share equation the pre- and post-income.

³ In the case of the last group (other non-durable goods), the expenditure share is adjusted so that the sum of all the expenditure shares equals 1. In economic terms, the household optimizes allocating all total expenditure to purchase the basket of goods.

Figure 4. Expenditure shares sheet

EXPENDITUR	E SHARES.	PREDICTION				_	EXPENDITURE	SHARES. REFORM		
$w_i = \alpha_i$	$+\sum_{j=1}^{n} \gamma_{ij} \ln p$	$p_j + \beta_l \ln \left[\frac{m}{a(p)}\right]$	$+\frac{\lambda_i}{b(p)} \left\{ \mathbf{h}_{\mathbf{k}}^{\mathbf{k}} \right\}$	$\left[\frac{m}{a(p)}\right]$	2		$w_i^{R1} = w_i + \frac{1}{2}$	$\sum_{k=1}^{n} \gamma_{ik} \left(\ln p_{k}^{R1} - l \right)$	n p _k)	
nousehold	wfood_p	wgasoline_p	wlpg_p	welect_p	wondur_p	household	wfood_p_r1	wgasoline_p_r1	wlpg_p_r1	welect_p_r1
1	0,535486	0,169470241	0,056172	0,0593733	0,1794986	1	0,530511497	0,168695694	0,057911776	0,05990318
2	0,619452	0,162000924	0,044493	0,0037503	0,1102976	4	0,014477749	0,101220370	0,040232730	0,0042802
4	0.684944	0,023541200	0.065622	0.0738987	0.1755347		0.679969994	0,023100741	0.067362078	0.07442854
5	0,43657	0,193324051	0,061071	0,0337274	0,2753077	5	0,431595632	0,192549504	0,062810614	0,03425726
6	0,366421	0,243679015	0,043286	0,0040777	0,3425368	6	0,361446366	0,242904468	0,045025485	0,00460758
7	0,639306	0,012604475	0,052385	0,0599935	0,2357109	7	0,634332123	0,011829927	0,054124415	0,06052338
8	0,585138	0,149051132	0,053609	0,0667984	0,1454037	٤	0,580163689	0,148276584	0,055348531	0,0673282
9	0,391345	0,196138265	0,056379	0,038832	0,3173057	9	0,386370887	0,195363718	0,058118501	0,0393619
10	0,781117	0	0,059252	0,1387918	0,0208391	10	0,776142841	0	0,060991698	0,1393216
11	0,46363	0,183695731	0,053762	0,0444493	0,2544631	11	0,458655545	0,182921184	0,055501749	0,04497916
12	0,6335	0,103423772	0,048573	0,062344	0,15216	12	0,628525149	0,102649225	0,050312563	0,06287385
13	0,440151	0,18286898	0,063294	0,0435651	0,2701211	13	0,435176539	0,182094433	0,065033731	0,04409497

Sheet 5. Tax payments

This sheet shows the revenue obtained from each household when prices, income or both change. We could be interested in reforms changing taxes, but the tool serves for each shock in prices and income we are interested. Price changes are commodity-dependent, but we could also think (and simulate) in the case of household-dependent prices changes. Tax payments are calculated by dividing the new expenditure on each good (the result of multiplying the new share of expenditure on the good by total expenditure on non-durable goods) by the new price of the product (multiplying its average price by 1 plus the increase in price) to obtain the new consumption, which is multiplied by the increase in price resulting from the reform to obtain the additional revenue.

Likewise, we calculate total revenue at population level (national or regional level) using the grossingup factor, which is a variable within our information set and collects the number of households in the population represented by the corresponding household. Since Mexican data contains quarterly information, to obtain annual revenue (or annual additional revenue), the obtained figure is multiplied by 4.⁴

	REFORM. TOT	AL REVEN	UE (million pe	os)				
		Quarterly	Annual					
	Gasoline	21,43	85,72					
	LPG	13,54	54,17					
	Electricity	11,69	46,75					
	TOTAL	46,66	186,64					
R LI	venue ner na	isenoid in	esosi					
ne outobold		Isenoia (p	esos)	ha	usobold		populat	ion)
ousehold	gasoline	Ipg	electricity	hou	usehold	1	populat gasoline	ion) Ipg
ousehold	gasoline 148,7055419	lpg 89,46171	electricity 88,59163727	hou	usehold	1	populat gasoline 26023,4698	ion) Ipg 15655,8
ousehold 1 2	gasoline 148,7055419 129,6277409	Ipg 89,46171 65,14163	electricity 88,59163727 86,71605999 70 82885426	hou	usehold	1 2 2	populat gasoline 26023,4698 22684,8547 2277 56826	ion) Ipg 15655,8 11399,78
iousehold 1 2 3	gasoline 148,7055419 129,6277409 13,01467576	Ipg 89,46171 65,14163 65,87846	electricity 88,59163727 86,71605999 70,82985436 60,21540409	hou	usehold	1 2 3	populat gasoline 26023,4698 22684,8547 2277,56826	ion) Ipg 15655,8 11399,78 11528,73 9962,059
iousehold 1 2 3 4 5	gasoline 148,7055419 129,6277409 13,01467576 0 202 9717623	lpg 89,46171 65,14163 65,87846 56,92605 116,0308	electricity 88,59163727 86,71605999 70,82985436 60,21540409 60,58505998	hou	usehold	1 2 3 4	populat gasoline 26023,4698 22684,8547 2277,56826 0 38361 6631	ion) lpg 15655,8 11399,78 11528,73 9962,059 21929,83
ousehold 1 2 3 4 5 6	gasoline 148,7055419 129,6277409 13,01467576 0 202,9717623 367 5067719	lpg 89,46171 65,14163 65,87846 56,92605 116,0308 119,3811	electricity 88,59163727 86,71605999 70,82985436 60,21540409 60,58505998 11,69561469	hou	usehold	1 2 3 4 5	populat 26023,4698 22684,8547 2277,56826 0 38361,6631 69458,7799	ion) Ipg 15655,8 11399,78 11528,73 9962,059 21929,83 22563,02
ousehold 1 2 3 4 5 6 7	gasoline 148,7055419 129,6277409 13,01467576 0 202,9717623 367,5067719 5,223470456	lpg 89,46171 65,14163 65,87846 56,92605 116,0308 119,3811 41 88104	electricity 88,59163727 86,71605999 70,82985436 60,21540409 60,58505998 11,69561469 44,83528626	ho	usehold	1 2 3 4 5 6 7	populat 26023,4698 22684,8547 2277,56826 0 38361,6631 69458,7799 987,235916	ion) Ipg 15655,8 11399,78 11528,73 9962,059 21929,83 22563,02 7915,516
ousehold 1 2 3 4 5 6 7 8	gasoline 148,7055419 129,6277409 13,01467576 0 202,9717623 367,5067719 5,223470456 112,2525224	lpg 89,46171 65,14163 65,87846 56,92605 116,0308 119,3811 41,88104 73,43055	electricity 88,59163727 86,71605999 70,82985436 60,21540409 60,58505998 11,69561469 44,83528626 85,51464769	hou	usehold	1 2 3 4 5 6 7 8	populat gasoline 26023,4698 22684,8547 2277,56826 0 38361,6631 69458,7799 987,235916 20878,9692	ion) Ipg 15655,8 11399,78 11528,73 9962,059 21929,83 22563,02 7915,516 13658,08
ousehold 1 2 3 4 5 6 7 8 9	gasoline 148,7055419 129,6277409 13,01467576 0 202,9717623 367,5067719 5,223470456 112,2525224 251,1491747	lpg 89,46171 65,14163 65,87846 56,92605 116,0308 119,3811 41,88104 73,43055 130,9331	electricity 88,59163727 86,71605999 70,82985436 60,21540409 60,58505998 11,69561469 44,83528626 85,51464769 84,89530114	hoi	usehold	1 2 3 4 5 6 7 8 9	populat gasoline 26023,4698 22684,8547 2277,56826 0 38361,6631 69458,7799 987,235916 20878,9692 46713,7465	ion) Ipg 15655,8 11399,78 11528,73 9962,059 21929,83 22563,02 7915,516 13658,08 24353,55

Figure 5. Tax payments sheet

⁴ We can also think that the is some sort of seasonality in consumption and make different corrections for all additional revenue or good-specific additional revenue.

Sheet 6. Welfare measures

We calculate and show in this sheet the equivalent gain (or equivalent loss) as a result of the price (income) shock and it is shown for each household both in monetary terms and as a percentage of total non-durable expenditure. Moreover, we also show it on average weighted by the grossing up factor at the population level. Equivalent loss (*EL*) is calculated according to formula (we show it for prices, but we can also calculate for changes in *m* -total expenditure-):

$$EL^{h} = c(u_{0}, p^{0}) - (u_{0}, p^{1})$$

where u_0 is pre-reform utility, p^0 and p^1 are the vector of pre- and post-shock prices, respectively; $c(u_0, p^0)$ is the observed pre-shock expenditure and $c(u_0, p^1)$ the equivalent income, i.e., the expenditure level at pre-shock prices that is equivalent in utility terms to household expenditure at final prices. The cost function is $ln c(u, p) = ln a(p) + \frac{ln u b(p)}{1 - \lambda(p) ln u'}$ while the initial utility level is calculated using the following formula:⁵

$$lnu_0 = \left\{ \left[\frac{lnm - lna(p)}{b(p)} \right]^{-1} + \lambda(p) \right\}^{-1}$$

a(p), b(p) and $\lambda(p)$ are the vector of prices previously defined and *m* is total expenditure.

⁵ A discussion can be found in Banks *et al.* (1996).

Figure 6. Welfare measures sheet

EQUIVALENT LOSS (EL)								
$EL^h = c(u_0, p)$	$(\boldsymbol{p^0}) - c(u_0, \boldsymbol{p^1})$							
	Reform							
	EL (pesos)	EL (%)						
Average	-261,95	-1,62%						
household								
1	-339,6582042	-2,09%						
2	-292,2661254	-1,97%						
3	-156,0070043	-1,50%						
4	-119,9213615	-1,35%						
5	-393,5196232	-2,02%						
6	-513,0990875	-1,84%						
7	-95,47470683	-1,17%						
8	-282,056455	-2,02%						
9	-483,8398435	-2,04%						
10	-50,25367048	-1,63%						
11	-405,2447782	-2,00%						
12	-152,3262612	-1,67%						

Sheet 7. Indexes and graphs

Here we calculate the Gini index before and after the shock using:⁶

$$GI = 1 + \frac{1}{n} - \frac{2}{n^2 y} \sum_{h} y_h(n+1-h)$$

Where y is average household income and y_h income of household h; n is the number of households, and they are in ascending order of their income.

We also present a graph with the Lorenz curve, which any possible graph the reader interested could do here.

Figure 7. Indexes and graphs sheet

⁶ Of course, in this sheet we can include any measure of inequality or any other index.

Sheet 8. Auxiliary calculations

In this sheet all the intermediate calculations necessary to obtain the results of the previous sheets are performed, using the information contained in each of the sheets:

- Columns C-G: α_i for each household and product
- Columns I-L: $\sum_{i=1}^{k} \gamma_{ii} lnp_i$ for calculating predicted shares
- Columns N-V: Initial value of *a(p)*
- Column X: Initial value of b(p)
- Column Z: Initial value of $\lambda(p)$
- Columns AB-AF: Necessary expressions for calculating $c(u_0,p^0)$
- -Columns AH-AL: After-shock value of *a(p)*
- Column AN: After-shock value of b(p)
- Column AP: After-shock value of $\lambda(p)$
- Columns AR-AT: Necessary expressions for calculating $c(u_0,p^1)$
- Columns AV-AX: All necessary expressions for the equivalent loss both at household and aggregate levels
- Columns AZ-BF: Initial Gini index
- Columns BH-BN: After-shock Gini index
- Columns BP-BR: Calculations to make the Lorenz curve

Sheet 9. Notes

This sheet contains explanatory notes to the previous sheets. All details about names of variables, construction of variables, parameters, etc. are in Labandeira *et al*. (2022).

References

Banks, J., R. Blundell and A. Lewbel (1996), "Tax reform and welfare measurement: Do we need demand system estimation", *The Economic Journal* 106, 1227-1241.

Banks, J., R. Blundell and A. Lewbel (1997), "Quadratic Engel curves and consumer demand", *The Review of Economics and Statistics* 79(4), 527-539.

Labandeira, X., JM. Labeaga, X. López-Otero and T. Sterner (2022), "Distributional impacts of carbon taxation in Mexico", *Cuadernos Económicos de ICE* 102, 111-141.

Acknowledgement

The project CHIPS is part of AXIS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR/BMBF (DE, Grant No. 01LS1904A-B), AEI (ES) and ANR (FR) with co-funding by the European Union (Grant No. 776608).

