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Integrated Assessment Models (IAMs), which are model combining descriptions of 
the economy and the climate system, can be used to guide climate policy by assessing 
the costs and benefits. But climate policies are developed in a very heterogeneous 
world: countries, social groups, and generations have different standards of living. 
Also, costs and benefits of a policy vary greatly though space and time. It is important 
to be able to model those heterogeneities to better design a transition to a more 
sustainable world.  
In this report, we describe the approaches to model heterogeneity in the two IAMs 
used in the CHIPS project, namely the REMIND model and the NICE model, which 
have been (further) developed as part of the project. The application of the models 
with the inequality feature is described in Deliverable D5.2. 
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Integrated assessment models and distributions 
Standard IAMs operate on a fairly aggregate level, both in space and regarding sectors of the economy. 
While process-based IAMs like REMIND have high detail in technologies, just like cost-benefit IAMs as 
NICE they typically only model representative households per region, thereby ignoring subregional 
heterogeneity both in the effects of climate policy and in climate change impacts. Damages are usually 
included as aggregate impacts at the world, regional or at best country level.1 The models implicitly 
assume that differences in the burden of costs or climate damages can be dealt with using appropriate 
redistribution or compensation policy. However, recent literature has highlighted the importance of 
accounting for within region (or country) heterogeneity for the design of an optimal or fair policy 
(Dennig et al., 2015; Anthoff and Emmerling, 2019).  
 
There are two main kinds of heterogeneity that have to be taken into account. First, the baseline 
inequality within a country or region, that is within-country inequality in consumption or income, and 
its evolution through time. Baseline inequality means inequality absent any climate policy and without 
accounting for the climate change impacts. Second, there is the heterogeneity in the effects of climate 
policy. Here there are mainly two questions: the distribution of the costs of climate policy (whether 
poorer household support a higher relative cost); the distribution of climate damages (whether poorer 
household suffer more from climate change).  
 
We will discuss below that different tools can be used to deal with those different aspects. Let us first 
introduce those tools. 
    

Modelling distributions 

Lognormal distributions  
 
Modelling income and consumption distribution has often been done using parametric distributions, 
that is assuming specific distribution functions and estimating their parameters. One of the most 
common choice is to use a log-normal distribution (see Atkinson and Brandolini 2010). The log-normal 
density is often viewed as convenient and appropriate for modelling small to medium range incomes. 
It also fits well actual consumption distributions (Battistin, Blundell and Lewbell, 2009). 
 
A random variable X has a log normal distribution if its logarithm 𝑙𝑛(𝑋) has a normal distribution 
𝒩(𝜇, 𝜎!), with 𝜇 the mean and 𝜎! the variance of this associate normal distribution. It is also known 

that the mean of a log-normal distribution 𝑋 ∼ ℒ𝒩(𝜇, 𝜎!) is 𝔼[𝑋] = 𝑒"#
!
"$

"
, and that its variance is 

𝕍[𝑋] = 2𝑒$" − 15𝑒!"#$". Reciprocally, we can recover the parameters of the underlying/modelled 
distribution by matching its moments: 

𝜇 = 𝑙𝑛(𝔼[𝑋]) −
1
2
𝑙𝑛 71 +

𝕍[𝑋]
𝔼[𝑋]!

9, 

 
1 The DICE model by Nordhaus (Nordhaus, 2014) is a global aggregate model. Several models have representa-
tions of different regions: the RICE model (Nordhaus and Yang, 1996), the FUND model (Anthoff and Tol, 2012) 
or REMIND (Kriegler et al., 2017). More recently, Gazzotti et al. (2021) have produced a model based on RICE but 
with more than 50 countries or regions, thus increase further the description of between region heterogeneity. 
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Log-normal distributions can also be easily related to widely used inequality indices. If the distribution 
of consumption or income follows a log-normal distribution ℒ𝒩(𝜇, 𝜎!), then the Gini index associated 
with this distribution is 2Φ2𝜎/√25 − 1, where Φ is the cumulative distribution function of a standard 

normal distribution. Similarly, the associated value of the Atkinson index of parameter 𝜀 is 1 − 𝑒%&$"/!. 
Hence, we can easily match observed or projected values of those inequality indices with a log-normal 
distribution (provided we also have information on the mean).   
 
Log-normal distributions are also useful when computing social welfare, using the common Atkinson 
welfare measure. Consider a region 𝑟 where consumption 𝑐𝑖𝑟 is distributed according to some 
distribution 𝐹𝑟	(𝑐) where the index “𝑖𝑟” means that we consider an individual 𝑖 in region 𝑟. The 
average consumption in the region is 𝑐(D = ∫𝑐)( 𝑑𝐹(. The Atkinson welfare measure with level of 
inequality aversion 𝜀 is: 

𝑊 = HI𝑐)(*%& 𝑑𝐹(J
*/(*%&)

= 𝑐(D 7IH
𝑐)(
𝑐(D
J
*%&

𝑑𝐹(9
*/(*%&)

. 

If consumption is distributed as a log-normal distribution ℒ𝒩(𝜇, 𝜎!), then the expression of welfare 

simplifies to 𝑊 = 𝑐(D ∙ 𝑒%&$
"/!. This expression permits to obtain a simple formulation of social 

welfare, which is useful in cost-benefit analysis models aiming at maximizing inter-temporal welfare. 
 

Income elasticities 
 
To analyse the link between climate damages and the effects of climate change on inequality, Dennig 
et al. (2015) have proposed to use an income elasticity of damages. This income elasticity measures 
how much damages increase when income itself increases. A value of the income elasticity larger than 
one means that climate damages increase more than proportionally to income: high-income 
households suffer proportionally more. A value of one means that climate damages (as a share of 
income) are independent from income level: everyone is affected proportionally, so that income 
inequality is not changed by climate damages (at least if one look at a relative measure of inequality). 
The case most previous researchers were concerned about is the case where income elasticity is less 
than one. In that case, poor households suffer more from climate damages.  
 
Formally, let 𝑋)  be the value of some variable (for instance damages) for some group 𝑖 (for instance 
the 5th percent poorer people). Assuming a constant income elasticity means that: 

𝑋) = 𝜆 ∙ 𝑌)- , 
where 𝑌)  the income level, 𝜆 is some positive constant and 𝛼 is the elasticity. 
 
This implies that when 𝑌)  increases by 1%, then 𝑋)  increases by 𝛼%. When 𝛼 is larger (resp. lower) 
than one, then the value of variable 𝑋)  increases faster (resp. slower) than income. The formulation 
also easily allows to estimate parameter 𝛼 through the equation: 

𝑙𝑛(𝑋)) = 𝑙𝑛(𝜆) + 𝛼 ∙ 𝑙𝑛(𝑌)). 
We simply need to regress the log of the variable on the log of income. 



 
 

The REMIND model2 
REMIND (REgional Model of Investment and Development) is a numerical global and multi-regional 
model incorporating the economy, the climate system and a detailed representation of the energy 
sector. It has a special focus on the development of the energy sector and the implications for our 
world climate. The goal of REMIND is to find the optimal mix of investments in the economy and the 
energy sectors of each model region given a set of population, technology, policy and climate 
constraints. It also accounts for regional trade characteristics on goods, energy fuels, and emissions 
allowances. All greenhouse gas emissions due to human activities are represented in the model. 
 
A Ramsey-type growth model with perfect foresight serves as a macro-economic core projecting 
growth, savings and investments, factor incomes, energy and material demand. The macro-economic 
production factors are capital, labor, and final energy. A nested production function with constant 
elasticity of substitution determines the final energy demand. REMIND uses economic output for 
investments in the macro-economic capital stock as well as for consumption, trade, and energy system 
expenditures. 
 
The energy system representation differentiates between a variety of fossil, biogenic, nuclear and 
renewable energy resources. More than 50 technologies are available for the conversion of primary 
energy into secondary energy carriers as well as for the distribution of secondary energy carriers into 
final energy. The macro-economic core and the energy system part are hard-linked via the final energy 
demand and the costs incurred by the energy system.  
 
REMIND operates at the level of 12 big regions (including 5 individual countries), and focuses on the 
energy costs in different emission scenarios. The inequality module, newly developed and 
implemented as part of the CHIPS project, accounts for the inequality of consumption within regions, 
and it models how it is affected in different low-carbon pathways.  
 

Baseline inequality modelling  

Baseline inequality modelling in REMIND is done using the log-normal assumption. The distribution of 
consumption within each region is supposed to be log-normal with parameters such that the average 
consumption matches the 'Baseline' scenario of REMIND 2.1, which is based on the SSP2 scenario.   

To calibrate the value of parameter 𝜎, it is assumed that future inequality will be the one implied by 
Rao et al.'s Gini projections for SSP2 (Rao et al., 2019). Specifically, any given level of the Gini index can 
be matched with a value of σ as explained above.3 This can be done for each region of REMIND, so that 
the model also includes region-specific baseline inequality.  

Distributional effects of climate policy and impacts: the inequality module  

The inequality module described how we go from the pre-policy distribution to the new distribution 
accounting for the additional energy expenditure and additional revenue (through carbon tax 
recycling) of a climate policy as well as for the effects of climate damages. 

 
2 The REMIND model is open source and available at https://github.com/remindmodel/remind.  
3 Denoting 𝐺 the value of the Gini index, and under the log-normal assumption, we know that 𝐺 = 2Φ&𝜎/√2) −
1. Reciprocally, 𝜎 = √2 ⋅ Φ!" -"#$

%
.. 



 
 

 
Let denote individual in a specific region at a specific time by 𝑖, and let 𝑐)

.(/ be the pre-policy 

consumption of individual 𝑖 and 𝑐)
.012 be the post-policy consumption of individual 𝑖. It is assumed 

that: 
𝑐)
.012 = 𝛾2𝑐)

.(/ − 𝑒2𝑐)
.(/5 + 𝑟2𝑐)

.(/5 − 𝜔(𝑐)
.(/)5, 

Where 𝛾 is a scaling constant (to match macro aggregates), 𝑒2𝑐)
.(/5 is the additional energy 

expenditure, 𝑟2𝑐)
.(/5 is the additional revenue and 𝜔(𝑐)

.(/) is the change in consumption due to 

climate change damages. We denote 𝑒3 =
/̅
5
 ̅the share of aggregate energy expenditure, and similarly 

𝑟3 the share of aggregate tax revenues and 𝜔3 the share of impacts. An additional assumption of 
constant income elasticity is made for the additional energy expenditure, revenue and impacts, plus a 
normalization so that: 

𝑒2𝑐)
.(/5 =

𝑒32𝑐)
.(/5-

∫2𝑐.(/5
-𝑑𝐹(𝑐)

, 

𝑟2𝑐)
.(/5 =

𝑟32𝑐)
.(/56

∫2𝑐.(/5
6
𝑑𝐹(𝑐)

, 

𝜔2𝑐)
.(/5 =

𝜔32𝑐)
.(/57

∫2𝑐.(/5
7𝑑𝐹(𝑐)

, 

 
with 𝛼 the income elasticity for energy expenditure, 𝛽 the income elasticity for revenue and 𝜉 the 
income elasticity of climate impacts.  
 
In the end: 

𝑐)
.012 = 𝛾T𝑐)

.(/ −
𝑒32𝑐)

.(/5-

∫2𝑐.(/5
-𝑑𝐹(𝑐)

+
𝑟32𝑐)

.(/56

∫2𝑐.(/5
6
𝑑𝐹(𝑐)

− −
𝜔32𝑐)

.(/57

∫2𝑐.(/5
7𝑑𝐹(𝑐)
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Let 𝝈𝒑𝒐𝒔𝒕𝟐  denote the variance of the post policy consumption. Using the log-normal assumption, it can 
be shown that 

𝝈𝒑𝒐𝒔𝒕𝟐 	= 𝒍𝒏T𝒆𝝈𝟐 − 𝟐𝒆𝝈𝟐𝜶
𝒆[
𝒄[
+ 𝟐𝒆𝝈𝟐𝜷

𝒓[
𝒄[
− 𝟐𝒆𝝈𝟐𝝃

𝝎D
𝒄[
+ 𝒆𝝈𝟐𝜶𝟐 H

𝒆[
𝒄[J

𝟐
+ 𝒆𝝈𝟐𝜷𝟐 H

𝒓[
𝒄[J

𝟐
+ 𝒆𝝈𝟐𝝃𝟐 H

𝝎D
𝒄[ J

𝟐

− 𝟐𝒆𝝈𝟐𝜶𝜷 H
𝒆[
𝒄[J H

𝒓[
𝒄[J
+ 𝟐𝒆𝝈𝟐𝜶𝝃 H

𝒆[
𝒄[J H

𝝎D
𝒄[ J

− 𝟐𝒆𝝈𝟐𝜷𝝃 H
𝒓[
𝒄[J H

𝝎D
𝒄[ JU

− 𝟐𝒍𝒏 7𝟏 + H
𝒓[ − 𝒆[ − 𝝎D

𝒄[ J9, 

where 𝒆[ is the average additional energy expenditure, 𝒓[ is the average additional revenue and 𝝎D  is the 
average damage. 
 
When 𝝈 is small, the following approximation holds: 

𝝈𝒑𝒐𝒔𝒕𝟐 ≈ 𝝈𝟐 H
𝒄[ + 𝜷𝒓[ − 𝜶𝒆[ − 𝝃𝝎D
𝒄[ + 𝒓[ − 𝒆[ − 𝝎D J

𝟐

. 

The inequality module assumes that this approximation holds and that the new distribution of 
consumption – i.e. the post policy/post damage consumption – is still distributed according to a log-



 
 

normal law, with the new average and the new 𝝈𝒑𝒐𝒔𝒕𝟐 . Tests have been performed to show that the 
log-normal assumption is performing well, although there are cases where 𝝈 increases above 1.5. 
However, given the inherent uncertainties in measuring inequalities even in present-day data we 
consider this still a reasonable approximation. 
 
Hence the projection of future (post-policy) inequality only depends on the elasticities 𝜶,𝜷, 𝝃, and on 
average quantities 𝒄[, 𝒆[, 𝒓[ and 𝝎D . In the absence of impacts, inequality will increase in the policy 

scenario compared to the baseline case when 𝜶 ≤ 𝟏 − 𝒓B
𝒆B
(𝟏 − 𝜷). In the case of distributionally neutral 

redistribution of revenues (𝜷 = 𝟏) inequality increases when 𝜶 ≤ 𝟏 + 𝝎E
𝒆B
(𝟏 − 𝝃).  

 

Implementation in the REMIND model 
The log-normal approximation is included in the welfare module of the REMIND model and the 
distribution is updated based on changes in energy expenditures compared to the baseline case, tax 
revenues from carbon taxes applied in the model on emissions from the energy sector, 
process/fugitive emissions from non-energy sectors and emissions from carbon dioxide removal. Land-
use based emissions as well as exogenous emissions from aviation/shipping are excluded for now. In 
particularly in ambitious climate policy scenarios, negative emissions occur in the second half of the 
century to achieve a given climate target, meaning revenues from carbon tax would be negative. For 
now, it is assumed that in this case no distributional effects occur as it is unclear what these would be 
for tax to be levied to finance negative emission technologies.  
 
Climate change damages in REMIND are modelled using temperature-dependent aggregate damage 
functions reducing output (see also Deliverable D2.2 for more details). As the output effect does not 
directly translate into a consumption effect (since investment decisions are free in REMIND), we use a 
series of baseline and policy runs with damages to estimate a region-specific relation between output 
damages and consumption loss. Generally, consumption loss is higher than direct output loss.  
 
Damages are endogenized via the social cost of carbon which is calculated through an analytical 
approach, with a solution found in an iterative way (Schultes et al. 2021). To enable the feedback of 
inequality of damages on the transformation pathway, the social cost of carbon calculation is amended 
with an extra term, based on the derivations by Anthoff & Emmerling (2019). That increases the social 
cost of carbon. 
 
The elasticity of energy expenditure 𝜶 Is estimated through an empirical approach using country-level 
data for four income groups from the Global Consumption Database. This is further described in 
Soergel et al. (2021). The elasticity of revenues 𝛽 is a modeling choice, depending if the redistribution 
should be distributionally neutral (𝛽 = 1) or progressive (𝛽 < 1). No robust quantification of the 
elasticity of damages 𝜉 is available in the literature yet, though many studies find larger impacts on the 
poor than on the rich (e.g. Hallegatte & Rozenberg 2017). As a standard case we assume 𝜉 = 0.5, but 
also run sensitivity analyses with 𝜉 = 0 and 𝜉 = 1. 
 

 



 
 

The NICE model 
The Nested Inequalities Climate Economy (NICE) model is a modification of the RICE model William 
Nordhaus (Nordhaus and Yang, 1996). RICE is a regionally disaggregated optimization model that 
includes an economic component and a climate component that are linked. RICE divides the world into 
12 regions, some of which are single countries while others are groups of countries. Each region has a 
distinct endowment of economic inputs including capital, labor, and technology, which together 
produce that region’s gross output via a Cobb-Douglas production function. Carbon emissions are a 
function of gross output and an exogenously determined, region-specific, carbon intensity pathway. 
These carbon emissions can be abated (mitigating climate change) at a cost to gross output via regional 
control policies that are selected so that in every period the marginal cost of abatement – or carbon 
price – is the same for all regions. The climate module determines how unabated carbon emissions 
affect global temperature and, ultimately, the future economy through climate-related damages. 
Region-specific damage functions capture this relationship between increased temperature and 
economic damage, with poorer regions generally more vulnerable as a proportion of income.  
 
The NICE model extends RICE by disaggregating regional consumption into five (or ten) socio-economic 
groups with consumption levels reflecting the current distribution of consumption within the regions. 
So as not to affect any of the aggregate economic variables (investment, capital, output, etc.), this is 
done by splitting average regional consumption into five units (or quintiles) after aggregate savings 
have been determined.  
 
Baseline inequality modelling  
Let denote regions by index 𝑖, quantiles by 𝑗, and periods by 𝑡. Quantities without a 𝑗 index are regional 
aggregates. Average gross consumption (pre-damage and pre-mitigation cost) in a given region at a 
specific time is 

𝑐)̅2
.(/ =

1 − 𝑠)2
𝐿)2

𝑄)2 .  

 
To model baseline distribution, we need to obtain average consumption at the quintile or the decile 
 level. For the sake of this discussion, let us assume that the description is at the quintile level.  The 
baseline distribution is produced using quintile weights 𝑞)F2 that denote the ratio between quintile 
consumption and average consumption. That is 𝑐)̅F2

.(/ = 𝑞)F2 ∙ 𝑐)̅2
.(/ If for quintile 𝑗 in region 𝑖 and period 

𝑡, 𝑞)F2 > 1, its consumption is greater than average regional consumption in that period, and if 𝑞)F2 <
1 its consumption is less than the average. Since the five quintiles comprise equal proportions of the 
population, ∑ 𝑞)F2F = 	5 in all regions and periods.  
 
The initial quintile weights are the current distribution of consumption. For the future, NICE uses an 
approach similar to that of REMIND 2.1. Namely, region distributions are based on Rao et al.'s Gini 
projections for SSP2 (Rao et al., 2019). Specifically, levels of the Gini index are matched with a value of 
σ using the assumption that the distribution is log-normal. Then, keeping the assumption of a log-
normal distribution, the quintiles or deciles of the distribution can be retrieved.  
 

Distributional effects of policy  
The baseline inequality will be affected by policy through three channels. First, the (mitigation) costs 
of the policy have to be distributed. Second, climate damages can affect different income groups in 
different ways. Last, the carbon tax that is used as a policy tool have different impacts on different 
groups and can be redistributed. 



 
 

 
Given the mitigation costs and climate damages, net output 𝑌)2 of country 𝑖 at period 𝑡 is given by  

𝑌)2 =
1 − 𝜆)2
1 + 𝐷)2

𝑄)2	  

where 𝑄)2 denotes gross output, 𝜆)2 mitigation cost (opportunity costs of reducing CO2 emissions as a 
share of GDP) and 𝐷)2 climate damages. Note that those numbers a region specific. In each period the 
regional mitigation costs are chosen so that they are consistent with a globally uniform carbon price, 
which is implemented as a local tax, 𝑡𝑎𝑥2 in each region.  
 
Defining the aggregate savings rate 𝑠)2 and population 𝐿)2, the average (net) regional consumption is 

𝑐)̅2 =
1 − 𝑠)2
𝐿)2

𝑌)2  

while the average gross consumption (pre-damage and pre-mitigation cost) is 

𝑐)̅2
.(/ =

1 − 𝑠)2
𝐿)2

𝑄)2 =	
1 + 𝐷)2
1 − 𝜆)2

𝑐)̅2 ≈ (1 + 𝜆)2 + 𝐷)2)𝑐)̅2 .  

Hence, we obtain the following equation at the aggregate level: 
𝑐)̅2 ≈ 𝑐)̅2

.(/ − 𝜆)2𝑐)̅2 − 𝐷)2𝑐)̅2  
 
Then a first question is how to distribute the per capita mitigation costs 𝜆)2𝑐)̅2  and the per capita 
damages 𝐷)2𝑐)̅2 .  It is assumed that each income group bears a share 𝑑)F2 and 𝑚)F2 of the damages and 
mitigation cost. Those distributional weights of damage and of mitigation costs (𝑑)F2 and 𝑚)F2) are 
determined by a constant elasticity relationship to the consumption distribution: 

𝑑)F2 =	
𝑞)F2
7

5∑ 𝑞)G2
7

G
 

and 

𝑚)F2 =	
𝑞)F2
H$%

5∑ 𝑞)G2
H$%

�
. 

 
On top of those effects, policy can take the form of a carbon tax that may be redistributed. Within a 
region, the burden of the carbon tax is distributed across quintiles according to the weights 𝜏)F2, with  

𝜏)F2 = 	5
I$&%
'$%

∑ I$(%
'$%

(
. Then the proceed is redistributed according to the weights 𝛿)F2. The per capita amount 

of the carbon tax is K$%
L$%
⋅ 𝑡𝑎𝑥2, so that for a given income group the net effect of the tax is:  

𝐸)2
𝐿)2

⋅ 𝑡𝑎𝑥2 ⋅ 2𝜏)F2 − 𝛿)F25. 

 
Two important sets of assumptions are made. The first substantive assumption of is that the mitigation 
cost and the tax payment are distributed according to the same elasticity 𝜔)2. The second substantive 
assumption concerns the description of the available tax policies. A first policy (Distributionally neutral) 
implies that the carbon tax has no redistributive impact, i.e. 𝜏)F2 − 𝛿)F2 = 0. A second policy is per 
capita redistribution that is 𝛿)F2 	= 1. 
 
In the end, the quantile net consumption levels are given by: 

𝑐)F2 = 𝑐)̅2
.(/ ⋅ 𝑞)F2yzz{zz|

MNOPP	ROSPTUVWXOS

− 𝑐)̅2𝐷)2𝑑)F2yzz{zz|
YZUZM[	ROPW

− 	𝑐)̅2
.(/𝜆)2𝜏)F2yzz{zz|

UXWXMZWXOS	ROPW

− K$%
L$%
⋅ 𝑡𝑎𝑥2𝜏)F2yzzz{zzz|

WZ\	VZ]U[SWP

+	K$%
L$%
⋅ 𝑡𝑎𝑥2𝛿)F2yzzz{zzz|
N[^TSY

.
  

This equation produces the new (post policy) distribution. 
 
 



 
 

New developments in the CHIPS project 
 
NICE has been adjusted to match the current state-of-the art socioeconomic scenarios, the Shared 
Socioeconomic Pathways (SSPs, Riahi et al. 2017), in particular SSP2, the middle of the road scenario. 
This allows a more direct comparison of NICE results with that of other integrated assessment models.  
Also, we have developed a version of NICE where regions are actually countries, that is we use 183 
countries instead of the 12 RICE aggregated regions. Correspondingly, damages have been 
differentiated at the country-level depending on the local climate anomaly. 
 
The preferred specification for the income elasticity of climate damages 𝜉 is set to 0.85, based on a 
work done by M. Gilli in collaboration with the CHIPS project (Gilli, 2020). The preferred specification 
for the income elasticity of mitigation cost is based on Budolfson et al. (2021). 
 
Furthermore, multiple different redistribution mechanisms for carbon tax revenues have been 
implemented, including regional and global redistribution, as well as a new form where the amount 
redistributed is proportional to the regional climate change damages. This is inspired by the current 
loss-and-damage debate and further discussed in Deliverable 5.2. 
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